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Received 6 August 1975 

A&~act. The design of a reflector capable of producing a generalized two-variable beam 
shape when illuminated by a point source is investigated under the geometric-optics 
approximation. The problem is formulated as a mapping problem between points on a unit 
sphere in which areas are related by energy considerations. The solution of a resulting set of 
nonlinear partial differential equations is required. An investigation of the hyperbolic form 
of these equations shows that they can be reduced to a set of quasi-linear first-order partial 
differential equations which can be solved subject to initial conditions. 

1 Introduction 

Anew method has been introduced recently by Norris and Westcott (1974) for the 
&p of a reflector surface under the geometric-optics approximation, to Produce a 
hshape which varies as a prescribed function of two variables when the reflector is 
ihinated by an isotropic point source. 
ne theoretical foundations of the method are given in Westcott and Norris (1975) 

&"ider the following problem. If D(u' ,  U') is the ratio between the reflector 
Meld and incident power densities G, I respectively, where u l ,  U* are generalized 
midinates which parametrize the reflected ray direction, can an explicit surface 
dui, U*) be found such that the laws of energy conservation and geometrical reflection 

satisfied? 
Some simplifying assumptions are made in the above reference, among which I is 

a " d  constant corresponding to an isotropic point source, and it is shown that the 
oroblem may be reduced to solving a nonlinear ' second-order partial differential 
Wition of the Monge-Ampkre type 

lienspherical polars (U', u 2 )  = (e, +) are used to define reflected ray directions. In this 
quation a, b, c, d and e are explicit functions of 8, Ue,  a+, and both e and D(e,+) are 
Mtivefunctions. Aformulafor the reflector surface r (e ,+ ,  a, ae, ab) is developed and 
"Puted from solutions of (1). 

ne choice of the positive or negative sign affixed to the last term of (1) makes the 
quahonelliptic or hyperbolic respectively, and previous work has examined the elliptic 

Of the equation and has introduced closed boundary conditions to enable 
nmerical solutions to be obtained. 

In this Paper we describe an alternative but equivalent treatment which has 
advantages when hyperbolic forms of the equation are considered. The approach 

(1) 2 
UeeUdb - = aae, + 2 baeb + + d * e D  
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results ultimately in a formulation in terms of an initial-value problem invo]vingaEtd 
four, simultaneous quasi-linear first-order partial differential equations. 

The main benefits of this treatment are that questions of existence and uniquemd 
solutions can be .handled by classical theorems, and the computation of r e h  
surfam may be achieved using standard methods of analysis. 

In Q 2 the problem is formulated by considering a 1 : 1 mapping between pintson, 
unit sphere. Energy considerations imply that areas on the sphere are increased bya 
factor D under the transformation. A further equation is derived from the geomew 
law of reflection. Some exact solutions of these equations are derived in 8 3. It Mlt 
proposed that these solut~ons are necessarily significant from the point of view of 
physical applications, but they do provide a useful check on numerical methods. 

The development of the equivalent set of quasi-linear first-order partial differeau 
equations for the hyperbolic case is given in 0 4, where a method related to the m e a  
of characteristics is used. Ihe equations are solved subject to the dependent variables 
being given initial values. This procedure is discussed in § 5 .  

Some general results about reflector curvature are given in d 6, and finally some 
conclusions are presented in 8 7. 

F Brickell and 8 S Westcott 

2. Formulation of mapping problem 

In figure 1 a sphere of unit radius and centre 0 is drawn, where 0 is the point sourced 
incident rays. The points P, Q are the end points of unit vectors z, y drawn from 0. 

F- L Diagram showing incident and reflected ray directions. 

The unit vector z is in the direction of the incident ray, x = TZ is the position vectord 
the point of reflection R, and y is in the direction of the reflected ray. Our aim is tofindx 
as a function of y so that a given far-field power density pattern G(y) is obtained froma 
given source power pattern I(z). Geometrically this means that the mapping x : Pp 
has to alter areas by a factor 

D = GII. 
To express this condition as a differential equation we choose a system of coordinates 
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ibly different) system for Q.Let (U', u2) denote the coordinates of P and 
L r p l p d a ( ~  Q with respect to the corresponding coordinate systems. Thus z, I can 
f s a  functions of ( U ' ,  U') and y, G as functions of (U', U'). We write 

zi = az/avi, T~ = ay/au i, 
hj = zi . zp gij = Yi * Yj, i , j = l , 2  

dbte the determinants of the matrices h,, gii by h, g respectively. We shall assume 
coordinate systems have been chosen so that the triple scalar products 

[hll,zJ, lp, yl, y2] are positive. It is easy to see that they are then equal to J h  and Jg 
+vel y. 

wjb this notation the area condition is that the mappingx, when expressed in terms 
dmrdinates as (U', U')+ (U', U'), should satisfy one of the differential equations 

The differential equation (2) is not the only restriction on x because the mapping 
also be realized by reflection in a reflector. To express this condition as a 

&rentidequation we first introduce some notation. The symbols d/dui, i = 1,2, will 
demte the partial derivatives of a function whose variables have been expressed in 
$ws of U' and u2 only. Thus, for example 

dz/dUi =I z j ( a d / a u i ) ,  j = 1,2.  
i 

Itisclear that the vector x - ry is a normal to the reflector at R. Since the vector dx/dui 
istangential to the reflector it follows that 

(dxldu'). ( x - ~ Y ) = O ,  i = 1,2.  

k conditions can easily be modified to give 

du/du'=y. (dz/du')/A (3) 

(4) 

d m  o=log r and A = 1 - y . z. It is convenient to introduce the function 

which is a function of all four variables U', U', U', U'. Because aV/aui = y .  zi/A it 
fdhs  that 

'P=--logA 

mapping x satisfies the differential equation obtained from the integrability 
a ~ t i o n s  

d2u/du' du2=d2c/du2 du' 

soda S%$tforward calculation using (4) shows that this is 

a d  a d  auz av2 %2-$-Vll -+Vz2-7-*z, ---0 
a u 2  a u  a d  - 

%re we have written Vii for the mixed derivative a2Y/av'auj. 

(7) 
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We can therefore attack our problem in two stages. We first solve the pm 
differential equations (2) and (7) to obtain U’, U* functions Of U’, U*, and then findo 
(and hence r )  by integrating (5).  In order to apply numerical methods to the solutionof 
(2) and (7) we have to impose initial- or boundary-value conditions to force uniquenQ, 
n e  choice of such conditions will depend on the nature Of the differential equations. 
We now show that they are of hyperbolic or elliptic type, according to the choice of + ,,, 
- sign in (2). 

The characteristics of the equations (for a given solution) are the integral curvesof 
the differential equations du2/du’ = K, where K is a root of the quadratic equation 

F Brickell and B S Westcon 

The differential equations are of hyperbolic, parabolic or elliptic type according 10 
whether these roots are real and distinct, coincident or complex. A calculation. using 
the equations (2) and (7), shows that the discriminant of the quadratic is 

depending on the sign in (2). It is shown in the appendix that the determinant lU,lis 
equal to -(gh)”2/A2 and is therefore negative. Our statement is a consequence of this 
fact. 

We do not make a detailed study of the elliptic case in this paper. The hyperbolic 
case wilt be considered in 034 and 5 ,  where we shall explain a method of findin! 
solutions subject to given initial values. 

3. Some explicit solutions 

We choose a system of spherical polar coordinates on the unit sphere correspondingto 
the axes OX, OY, OZ shown in figure 2(a). Let (a, p) ,  (0,d) denote, respectively, the 
coordinates of the points P, Q in this system. In the notation of Q 2 

1 ? 2 
U =a, v -  = p, u ’=e ,  U =4. 

We find 

z = (sin a cos @, sin a sin 8, cos a) 

y = (sin e cos 4, sin 6 sin 4, cos e) 
h = sin’a, g = sin2@ 

A = 1 -sin a sin 8 cos(p-d)-cos LY cos e 
A2Yl 1 = (COS CY cos 8 - 1) cos(@ - 4) +sin a sin e 
AZVlz =sin 6 (cos a --cos e) sin (@ - 4) 
A%’2, =sin @(cos a -cos e) sin ( p  - 4) 

= sin a sin e[(l -cos e cos a) cos ( p  -4) -sin a sin 01. 
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F'i 2. ( a )  Diagram showing coordinate system. (6) The initial lines I ,  L, r on the plane 
z=o. 

We shall construct solutions of equations (2) and (7), for particular functions D, by 
he following method. We try to find solutions of equation (7) in some special form. 
Ifsucb solutions exist we can use equation ( 2 )  to define a corresponding function D. 

Equations (7) and ( 2 )  become, in spherical polars, 

where we have put 

A = h29'12, B = -A2'Pl 1 ,  C = A2%fZ2, E = -A2'3'21. 

After a solution .(e, 4), p(e, 4 )  is obtained from (9) and (10) the reflector surface 
4094) can be derived by first integrating equations ( 5 )  which may be rewritten 
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Case ( i ) .  a = 6, f3(4) arbinary 

For this = 0 so that (9) is satisfied identically and (10) yieh 
D = }&I, indicating a $-independent arbitrary D(d). The differential equations areof 
e@& or hyperbolic type according to whether /3+ <O or >O. The COmespnh 
refleaor surface is obtained by integrating (1 1) and (12) to Yield 

A = E = 0 and a, = 

u = -log sin 8 + ,/ cot ;(& - B)(d/3/d4) dr$ 
d 2 

(13j 

where we have imposed the condition U = 0 and hence r = 1 when 8 = & = 7/2. 
we examine in particular the transformation a = e, /3 = k(4 - ?r/2) - 4 2  where k k  

a non-zero constant. The transformation is arranged so that it takes the point e = ~ i / z .  
4 = 4 2  to the point a = 7r/2, /3 = -7r/2. Then D = I & (  and, for k Z 1, 

2 k / ( I - k )  r =exp u =  (sin @-'(sin &(I - k M + ( l  + k ) 4  

or, in terms of a, fi, 
r = (sin a)-'{sin $k-'[2(1 -k ) /3  +(I  + /~ )? r ] }~ " ( * -~ ' .  

Case ( i i ) .  Sir@ -4) = 0, a(@ arbitrary 

We take /3 = 4 -IT and find that A = E  = 0, and since a, = 
satisfied identically. Then 

= 0, equation (9) is 

D = (sin a/sin e)lael 

which is a &independent arbitrary function of 8. The differential equations are of 
elliptic or hyperbolic type according to whether a, < 0 or >O. Equations (1 1) and (12) 
become 

=-a, cot $(CY +e) ,  f f + = O  

whence 
4 2  

r = exp( le cot $(a + e>(da/dO) de) 

taking r = 1 when 8 = 7r/2. If r is expressed in terms of a and p it will depend on a onb. 
Consequently the reflector is axially symmetric about the OZ axis. 

We examine in particular the transformation 

a = k ( 6  - 7r/2)+ ~ / 2 ,  @=f#J-rr 

where k is a nonzero constant. Then 

Ikl sin[k(B - ~ / 2 )  + ?r/2] 
sin 8 

D =  

and,for k Z - I ,  

r ={sin $-'[2(k + 1)a + (k - 1)77])-2kf(1+k). 
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$1 (iii). a =a(6), /3 = P(4) (but excluding ( i ) ,  ( i i ) )  

(9) and (10) become Es.t""" 

rosaasfv &e first equation we separate variables and put 

sin 4 d a  
dd s ina de  
dS - - -= k -- k, 

h k k a n  arbitrary constant. It follows from the second equation that the system is 
d&rbo]ic type with D = k2 sin2a/sin28. The differential equations for a, p can 
prifybe integrated and, if we impose the initial conditions a(?r/2) = ?r/2 = -p(?r/2), 
oe obtain 

a = 2  tan-'(uk), P = k ( 4  - ~ / 2 )  - ~ / 2  

&re U = tan $8. The expression for D in terms of U is 

D = k2[Uk-'(l + u2)/(l + U")]'. 

hk> 1, D has a maximum at 8 = 7~/2 ( U  = 1) and monotonically decreases to zero as 
440, U. 

Equations (11) and (12) can be integrated to yield an explicit form for the reflector 
dace .  If, for simplicity, we take k = 2 and integrate with r = 1 when 8 = 7r/2,+ = ?r/2 
ye obtain 

r = 8(1+ u4)/(1 + u2+2u sin 4)2. 
&(io).a=a(+), p = p ( e )  
Equations (9) and (10) become 

-+sina da  sin 8-=O dP 
dd d e  

sin 8 
d4  d8 sin a 

---- da dp-  *D-. 

%ring variables to satisfy the first equation we put 

dff dP -= k sin a, 
dd d8 

sin 8-= - k  

wberek isan arbitrary constant. It follows from the second equation that the system is 
'fiyperbdic type with D = k 2  sin2a/sin28. The differential equations for a, P Can 
@lY be integrated and, if we impose the initial conditions 

4 0 )  = 4 2 ,  P(.rr/2) = 0,  
Whin 

= 2 tan-'(exp k+), P = -k log(tan $8). 
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m e  corresponding expression for D in terms of 6, d is 

merefore I) has a sech' profile with 0 constant, and a coset' profile with 4 constant. 
An explicit form for the reflector surface is not forthcoming in this w, but 

equations (1 1) and (12) may be integrated numerically. Indeed this has been doneb 
order to check some more general computer programs to be discussed in a suhquen, 
Paper. 

D = k Z  sech' kd cosec'6. 

4. Reduction to a quasi-linear SYStem 

In order to solve the mapping problem formulated in 9 2  we have to solve 
simultaneous differential equations (2) and (7). Our main aim in this paper is to show 
how standard numerical methods can be applied to give solutions in the hyperbolic m, 
An essential step is the replacement of the system (2) and (7) by a set of partial 
differential equations which are linear in the derivatives. We explain this step in tbe 
present section. 

In the hyperbolic case the quadratic (8) yields distinct real roots K , ,  K~ and by 
integrating the two differential equations 

du2/dui = K], du2/du' = K~ 

we obtain two families of characteristics [(U', U') =constant, l(u', U') =constant. We 
now regard the functions [,l as independent variables. It can be shown that U', U', c'.  
u2, considered as functions of 5, l, satisfy a quasi-linear system which we write in matrir 
form as 

( l i j  

where 

A = Az'Pl2, B =-A2'P11, C = A2'4fz2, E = -A%zl. 

and A is a positive function defined by 

A' = (BC-AE)D(g/h)"'. 
It will be convenient when we consider initial conditions in 0 5 to have equation (I4) 
expressed in terms of variables x, y where 

t = x - y ,  I = x + y .  

It is easy to check that this expression is 

We have not given the detailed derivation of (14) and (15) because we use only the 
converse result. That is, we use the fact that any solution of (15) such that the J a d a  
determinant 
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e l e a d s  to a solution of the system (2) and (7). We now justify this statement in 

& we are given a solution 

v'  = u ' ( x ,  y), v 2  = v2(x, y ) ,  u 1  = UI(X, y), u2 = u2(x, y)  

'on (15). The condition J # 0 implies that the last two equations can be solved 
a& x and y as functions of U], U'. By substituting for x and y in the first two 
@mweobtain U'  and U *  as functions of U', U'. We shall show that these functions 
Mfhe equations (2) (with the + sign) and (7). 

dcssab 

Wemultiply equation (15) by the matrix of partial derivatives 

rqaation (16) can be written as 

x ux 

Bytaking the determinants of each side in the above equation we obtain 

&equation (2) follows from the definition of A'. 
BY equating the diagonal terms of each side in the above equation we obtain 

a d  av2  A 
au a u ' -  J 

a d  av2 A 
au a d -  J 

AT+C-- ---(U;u;- uru:, 

B,+E-- - - ( - U , U y + U , U x )  

aeWtion (7) follows by addition. 

conditions 

lparder to compute solutions of the system (2) and (7) in the hyperbolic case we force 
p!m by initial conditions. That is, we require that a given curve u 1 = 4 ' ( t ) ,  

( r )  should map under the transformation ,y of 9 2 into a given curve U' = t,bl(t), 
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v 2  = @(t). We explain how to obtain such a solution from the quasi-linear set (15),k 

F Brickell and B S Westcon 

A(av'/ax)+c(av'/ax) = -A(au'/ay) 

B(av'/ax)+E(ad/aX) = - u a u 2 / a y )  
A(av'/ay)+c(ao*/ay) = -A(au'/ax) (IS) 

B(avl/ay)+E(aoz/ay) = -A(au2/ax). 

The characteristics of the system (15) are y=*x+constant so that y=Oisnota 
characteristic. Consequently, standard theory (see, for example, Courant and l.&h 
1962) implies that there are unique solutions of (15) such that 

ui(x, 0) = C$yx), U'(X, 0) = 47x1, i = l , 2 .  

The work in 0 4 shows that, provided the Jacobian J is not zero on the curve y = 0, we 
can now construct the required solution to the system (2) and (7). By using equatim 
(13, the condition on J is easily shown to be the same as 

[A-+ d$' C-)-- d$* d4' ( B X  ~ J J ' + ~ @ ) @ , ~  
dx dx dx dx dx 

on the curve y = 0. 
Given the initial conditions, the solution of the system (15) can be computed bya 

k-Wendrof€ method (Mitchell 1969), and we shall present some numerical resultsin 
a subsequent paper. It is clear that the design of a reflector (for a given function D)is 
dependent on the choice of the initial conditions. We conclude this section by 
describing the choice we have made in some of our numerical work. 

We shall use the spherical polar coordinate system introduced in § 3. We choose 
the initial curve 1 defined by 8 = 1r/2,4 = t and we require that this curve should map 
underx intoacurve L defined bya = ~ / 2 ,  /? = f ( t ) .  The physical meaning of thischoice 
is that incident rays in the 2 = 0 plane are reflected within the same plane. 

The function f ( t )  is still at our disposal and we will explain later how we have 
determined it. The condition (17) imposes some restraints, for, from the formulaegiven 
at the beginning of 0 3, we find that on the curve y = 0 

A=E=O, B = C = cos(f(x) - X )  - 1 

and consequently (17) becomes 

[I -cos(f(x)-x)]f'(x) f 0. (18) 

Once the system (15) has been integrated, equations (1 1) and (12) can be 10 

obtain the partial derivatives &/ax, aa/ay of regarded as a function of x, k 
Consequently a is determined to within an additive constant and this implies that Is 
determined to within a multiplicative constant. The numerical determination of 
presents no difficulties. 

this we regard U as a function of a, p. It follows from (1 1) and (12) that 

On the curve y =O 

We note here that d x ,  0) = T ( X )  is determined by the initial conditions. TO show 

aujaa = --Z/A? ac/ap = -?/A. 

r;= 0, P=sin(f(x)-x), A =  1 -cos(~(x)-x) 
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dMuently, by the chain rule, 

*functjon T is used in our method for computing U. Geometrically it determines 
of intersection of the reflector with the plane Z = 0. This curve r, together 

&&curves I, L, are shown diagrammatically in figure 2 @ ) .  
bMdertoexplain our method for choosingf(t) we have to make some calculations. 

Firtof dl it is clear that, on the curve I, aa/a+ = 0, a/?/a+ =f'(t). We dcula te  the 
($~&-jvatives from equations (2 )  and (7). Equation ( 2 )  shows at once that 
BJae=D/f'(r) on 1. We have already seen in this section that on I 

A = E = O ,  B =  C=cos(f(t)-t)-l .  

bfollows from equation (7) that ap/aO = 0. We collect these values together. On the 
ml 

aalae = D/f Yr), aa/a+ = ap/ae = 0, ap/a+ = f ~ .  (20) 

Ihe values of the derivatives given in (20) show that, under the transformation x, 
mntvectors to the sphere in the direction of I are stretched by a factor f ' ( t ) ,  whilst 
&perpendicular to that direction are stretched by a factor D/f'( t) .  We keep these 
&tortions the same by choosing f so that 

dfldt = JD. 

Ihefunction f can still be altered by an additive constant. In order to try to avoid 
m blockage along the initial curves, we arrange that the reflected ray in the 
&&on of the Y axis comes from the incident ray which makes an angle of -7r/3 with 
tbexaxis. Thusf(7r/2) = -77/3, and f is uniquely determined by this further condition. 

h a n  example of our procedure, we consider the problem of designing a reflector 
far which 

D = 16 sin20 sinz~/cosh2(6 cos 0) cosh'(6 cos 4). 
curve I defined by f3 = 7r/2,4 = t is restricted to the interval 7r/3 s t s 27213. 

IhefundOn f(t) is determined by integrating the equation 

df 4sin t 
dt-cosh(6 cos t )  
-- 

&jmtothe condition f(77/2) = -7r/3. We obtain 

f ( t )  = -? tan-'[exp(6 cos t ) ]  

that f(t) lies in the interval (27r/3,0). Consequently cos(f(t) - t )  # 1 and, as 
df /dt#09 the condition (18) is satisfied. The function T can be obtained from (19), but 

has to be done numerically. 

'Ibeaimofthis section is to calculate the principal curvatures of the reflector along the 
defined in 0 5 ,  as these quantities will give us some idea of the shape of the 
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reflector near r. However, first of all, we shall obtain some general formulae. WeMe 
to Livhutz (1969) for the ideas from differential geometry with which we br 
concerned. 

We use the notation of 8 2 and, in addition, suppose that the reflector is parama- 
rized by coordinates x l ,  x2. For the moment these are general coordinates but theyariS 
eventually be specialized to the spherical polar coordinates of the point P. The sym& 
d/dxi, i = 1,2 will denote the partial derivatives of a function whose variables have bgo 
expressed in terms of XI, x 2  only. The principal curvatures are obtained from thefmt 
and second fundamental forms of the reflector surface, so we start by finding these lam 
quanti ties. 

The matrix yij of the first fundamental form (with respect to the coordinate System 
x , ,  xJ is defined by 

F Brickelf and B S Westcon 

d x d x  y i j = - . y .  
dx‘ dx 

Using the fact that x = E, we find that 

The formula ( 5 )  shows that 

where qIlt = a q / a v  ‘, and consequently 

It follows that 

The second fundamental form depends on the choice of a unit normal to the 
reflector surface. The normal R shown in figure 1 is in the direction of y - z. Because 

(y -Z) . (y - Z) =2(1- y . 2) = 212 

it follows that 

n = (y - z)/ (2A)’’*. 

The matrix Hii of the second fundamental form is defined by 

dx dn 
dx’ dx’’ 

Hii = --. - 

From equation (23) we find that 

(23) 
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rd then, because 

-=x--- dum aumdv '  m = 1,2 
dx' I av '  dx" 

Jbefonnulae (22) and (24) are simplified if we use the coordinates U', v 2  of P for the 
Doordinates of the point R on the reflector. For with x1 = U', x2 = v 2  they become 

yij = r 2 ( q i q j  + h,) (25)  

fl j  = r(2A)-'/'( h, - APim 7). a u m  
m av  

Wenow calculate the matrices (25)  and (26) along the curve r defined in § 5 ,  using 
hespherical polar coordinate system introduced in § 3. In the notation of § 5 ,  the 
mer is parametrized by r, the spherical polar coordinates of a point on it being given 
bv(P(l), d 2 ,  f(t)), where p ( t )  = exp d t ) .  

ltkconvenient to introduce the angle S = f ( t )  - t. Then, working from the formulae 
athebeginning of 0 3, we find that corresponding to the above point on r 

hll=h22= 1, h12= h21 = O ,  A =  1 -COS S 

TI = 0, q2 = -sin S/(I -cos S )  = -cot 

Aqi2=A'PZl =O, API1=-Aq22= 1. 

Weshall need to know the values of the partial derivatives au'/av' corresponding to 
'f'Ointof r. In our case the matrix 

BaFPropriate values of the derivatives in the last matrix have been listed in (20)  and it 
that along r 
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We substitute for all these quantities in (25) and (26) and obtain 

The principal curvatures of the reflector surface are given by the eigenvalues oftbe 
matrix Hij with respect to the matrix yip Consequently the principal curvatures at 
points on I' are 

The principal curvatures at a point on a surface are, by definition, the extreme values 
of the curvatures of the normal sections of the surface at the point. Suppose that 
choice f ' =  JD has been made. Then, at points on r for which D > 1, both print@ 
curvatures are positive, so all normal sections bend in the direction of the unit normal& 
At points on r for which D < 1, the horizontal section (by the plane 2 = 0) bends in tbe 
direction of n, but the vertical section bends away from n. Consequently the surfaceat 
such points is shaped like a saddle. 

The design of a reflector surface capable of producing a generalized two-variable beam 
shape when illuminated by a point source is shown, under the geometric-opba 
approximation, to require the solution of certain non-linear partial differentiation 
equations. For a given far-field power density pattern the equations can be of ellipticor 
hyperbolic type. 

The present paper develops a method for the theoretical and numerical solutionof 
these equations in the hyperbolic case. A solution is obtained subject to initial dataad 
a reflector surface can be designed by suitably limiting the solution. Although rm 
practical designs are presented in the paper we have tested the method on a numberd 
examples and hope to publish the results later. 

Features of the method are that the existence and uniqueness of solutions are 
deduced from classical theorems and the numerical solution is achieved by standard 
techniques. 

There appear to be two main difficulties. In the first place, it is not clear how to 
choose the initial data in the best way. We have made some comments on this point in 
$ 5 .  The work in 9 6 which deals with the influence of the initial data on the curvatured 
the reflector surface is also relevant. Secondly, having chosen the initial data, it is not 
clear aprwn that the solution will extend farenough from the initial data to allow forthe 
design of a reasonable reflector. 

The theory presented here complements the previous work of Westcott and "JIf" 
(1975) in the elliptic case. It should be applicable to a wide variety of problems hopoa 
and mi~owaves in which a shaped beam is required. It should be noted in 
that the theory does not exclude an anisotropic point source as tapered illuminaooa 
functions for I can be used within the definition of D. 
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r Y 7  Y l ? Y 2 l  

e 
IrYijl =-(gh)1'2/A2 

poof We shall use the notation of 0 2. We write 

z=by+C bjyj 
i 

laik+aibJAI=- 

zi = aiy + c aijyj 
i 

ladobtain at once by scalar multiplication by y ,  Y k  

b b ,  b2 

a1 a11 U12 . 
a2 a21 a22 

zi . y = a,, zi Y k  = C aijgjk. 
1 

I f& denotes the matrix inverse to gij, we find 

Comequently because 

follows that 
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